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IT’S EASY TO BEAT THE MARKET
Moshe Levya

The perception that it’s hard to beat the market portfolio is widespread. Indeed, passive
investment has more than doubled in the last decade. While various different strategies
have been suggested to outperform passive indexing, the market is still considered by
many as the relevant benchmark to beat. The evidence in this paper suggests that this
perception requires a fundamental re-examination. We compare the market with a large
number of randomly constructed and passively held portfolios. We find that 69% of these
random portfolios yield higher Sharpe ratios than the market. Practical implications and
theoretical consequences for market equilibrium are discussed.

The market index is widely perceived as a bench-
mark portfolio that is hard to beat. This perception
has both theoretical and empirical foundations.
Theoretically, the cornerstone Capital Asset Pric-
ing Model (CAPM) implies that the market
portfolio is the optimal mean–variance portfolio
of risky assets. In addition, the market portfo-
lio reflects the average portfolio holdings of all
investors (weighted by wealth), and thus res-
onates with the notion of the “wisdom of the
crowds”—the idea that the average estimate is
better than the individual estimate of a single
person.1 Empirically, it is well-established that
active portfolio managers typically underperform
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passive index investing.2 This is typically inter-
preted as evidence suggesting that the market
index is, at least, close to optimal.

The optimality of the market portfolio has impor-
tant theoretical and practical implications. The-
oretically, it is at the core of the CAPM.3 From
a practical perspective, an optimal market port-
folio implies that passive indexing dominates
active management. Most academics view the
market as being hard to beat, and advocate pas-
sive investment in the market index. For example,
Samuelson opens his article about the possibil-
ity of finding managers who are able to beat the
market with the following statement:

“Forsake search for needles that are so very small in
haystacks that are so very large”.
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He then continues to write:

“The security analyst industry does not on the average
perform quite as well over time as an indexed portfolio
that passively holds stocks in proportions approximating
their respective market capitalizations”. (Samuelson,
1989, p. 4)

In their classic textbook, Bodie et al. (2009) write:

“. . .a passive investor may view the market index as
a reasonable first approximation to an efficient risky
portfolio”. (p. 283)

Levy and Post (2005) concur, stating that:

“The empirical evidence finds consistently that mutual
fund managers on average lag behind the market if we
correct for risk and costs”. (p. 797)

These are just a few examples illustrating the
widely accepted notion that the market is close
to optimal, and therefore hard to beat. Indeed,
the proportion of funds invested passively in the
market has grown persistently and significantly.
In 2003 the proportion of assets held passively
by U.S. equity funds was approximately 17%. A
decade later, this figure has more than doubled,
reaching 35%.4

Various different strategies have been suggested
for outperforming the market, most notably
strategies based on the small-firm effect, the value
effect, momentum, calendar effects, fundamental
indexing, event-based strategies, and sentiment-
based strategies. While there is a varying degree
of agreement about the past and present success
of each of these strategies in beating the market
in practice, the market portfolio is still considered
the consensus benchmark to beat. The purpose of
this paper is not to suggest yet another strategy
for beating the market, but rather, to argue that
the market is a bad benchmark. Our goal is to
convince the reader that the market is a bench-
mark that is actually very easy to beat. This can

be achieved without employing any sophisticated
trading strategies. In fact, it is embarrassingly
simple.

Rather than comparing the market with a specific
alternative strategy, this paper takes a differ-
ent methodological approach. Our goal is to
sketch a wide-angle picture of the performance of
the market portfolio relative to the performance
landscape of a very large number of randomly
constructed buy-and-hold portfolios. We consider
the most general form of random portfolios—
the initial weights in each portfolio are randomly
drawn at the beginning of the period from a uni-
form distribution on the segment [0, 1],5 and from
that time onwards the portfolio is held passively
with no rebalancing.

We employ all 5-year time windows spanning the
entire 1927–2014 timeframe, with 1-month incre-
ments between windows (i.e. the first window
is January 1, 1927 to December 31, 1931; the
second window is February 1, 1927 to January
31, 1932, etc.). For each 5-year sub-period we
draw 10 random passive portfolios and compare
their performance with that of the value-weighted
market index over the same period. We find that
the random portfolios yield a higher Sharpe ratio
than the market in 69% of the cases. They yield
a higher terminal value in 67% of the cases. The
difference in performance is very significant both
statistically and economically.

This paper supports and expands the findings
of Arnott et al. (2013) and Clare et al. (2013).
Arnott et al. show that many strategies, includ-
ing strategies based on optimization, fundamental
analysis, and risk weighting, beat the market. Sur-
prisingly, the “upside-down” version of the same
strategies, i.e. weighting based on the inverse of
the strategies’ logic, also beat the market. They
also show that “Malkiel’s monkey”—a portfolio
composed of 30 stocks randomly selected at the
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beginning of each year—also on average beats
the market in terms of the Sharpe ratio. Clare
et al. analyze portfolios constructed by randomly
selecting (with replacement) one of the 1,000
largest stocks, adding 0.1% to its portfolio weight,
and repeating this procedure 1,000 times until the
entire portfolio weight of 100% is assigned. The
portfolio is constructed at the beginning of each
year. They find that for the 1968–2011 period the
vast majority of random portfolios yield higher
Sharpe ratios than the market portfolio.

Our analysis supports these results and extends
them in several important ways. First, our study
covers the entire 1927–2014 period. Second, we
introduce a different kind of random weighting:
rather than equally weighting the 30 randomly
chosen stocks, or employing the additive weight
approach by Clare et al., we attempt to consider
the most general form of random weighting, i.e.
portfolios spread all over the space of possible
portfolio weights. Third, we employ only the 500
largest stocks, in order to avoid potential liquid-
ity issues that may affect smaller stocks. Finally
and most importantly, we consider pure buy-and-
hold portfolios that are not rebalanced for the
entire 5-year period over which they are held. This
avoids both transaction cost issues, and the extra
“mixing” of weights that is obtained when the
portfolio weights are re-drawn every year.

How can these results be reconciled with the pre-
vailing widespread perception of optimality, or
near-optimality, of the market portfolio? When
comparing a specific portfolio or strategy with the
market, it is typically difficult to make inference
about the ex-ante relative performance, because
the estimation errors involved are usually very
large. For example, Levy and Roll (2010) show
that given the empirical parameter estimates, one
cannot reject the mean–variance optimality of
the market index. While the market does not
seem optimal with the observed parameters, a

small adjustment to these parameters, well within
their estimation error bounds, makes the market
portfolio optimal. The approach we take here is
somewhat different: rather than comparing the
market with a specific alternative portfolio or
strategy, we compare it with a very large num-
ber of random portfolios. Even if the estimation
errors are large, if the market is close to opti-
mal, we would expect it to beat at least 50% of
these random portfolios. We would certainly not
expect most of the random portfolios to beat the
market. . . But this is exactly what we find.

Still, one may ask, what about the fact that the
market outperforms most active managers? We
argue that this observation is less of a tribute to
the market, than it is a bleak indication about most
active management funds.

1 The market versus random portfolios

To evaluate how hard, or easy, it is to beat the
market index, we compare it with a large num-
ber of buy-and-hold portfolios with random initial
weights. In order to avoid small stocks with poten-
tial illiquidity issues, which have been argued to
drive various anomalies (Avramov et al., 2006;
Avramov et al., 2013), we restrict the analy-
sis to only the 500 largest-cap stocks. Thus, we
should stress that the results reported below are
not driven by the well-known small-firm effect,
which is primarily focused on the decile of small-
est stocks in the market, because the 500 largest
stocks are all in the largest-stock decile.

The performance of the market portfolio relative
to other portfolios may obviously depend on the
sample period employed. As we are interested
in making a general statement about the perfor-
mance of the market, we report results for all
5-year periods spanning the January 1, 1927–
December 31, 2014 timeframe, with a 1-month
increment between windows. For each sample
period, our stock universe is the set 500 stocks
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with largest market capitalization at the beginning
of the period (in keeping with previous work in
this area, ETFs and ADRs are excluded). As we
consider completely passive buy-and-hold port-
folios we stick to these stocks, and do not change
the stock set through the 5-year period. A random
portfolio is a portfolio with randomly assigned
initial portfolio weights for each of these stocks.
The initial weights of random portfolio p are
drawn in the following way: for each stock i

we draw a random variable x̃
p
i from a uniform

distribution over the segment [0, 1]. To obtain a
pure stock portfolio with weights adding up to
1, we then normalize the random weights. Thus,
the initial weight of stock i is set as: w̃

p
i =

x̃
p
i /

∑500
i=1 x̃

p
i .

After the portfolio is formed, it is held passively
with no further trading.6 We calculate the evolu-
tion of portfolio weights, and the portfolio return
for each month in the sample, employing the
CRSP monthly stock file. We then record the
monthly returns for each portfolio, and calculate
the monthly Sharpe ratio by using the average
30-day T-Bill rate in the sample period as the
risk-free rate.

As will be shown in what follows, the results
reported below are robust to the performance
measure employed, the holding period over which
returns are calculated, the number of stocks in
the random portfolios, and the distribution from
which the random weights are drawn.

2 Results

We have 996 five-year sample periods. For each
sample period initial date we construct 10 ran-
dom portfolios, to be held passively for 5 years
with no updating. For each period we com-
pare the performance of the random portfolios
with that of the value-weighted market portfo-
lio over the same period.7 The random portfolios
have an average monthly return of 0.99% and an

average standard deviation of 5.06% (both aver-
aged across all 9,960 random portfolios: 996 sam-
ple periods × 10 random portfolios). The average
Sharpe ratio is 0.163. For the market portfolio
the average return and average standard devia-
tion (averaged across the same 996 sub-periods)
is 0.90% and 5.01%, respectively, and the average
Sharpe ratio is 0.153. This difference in Sharpe
ratios translates to a difference of 1.1% in the risk-
adjusted annual returns.8 In 66% of the cases the
random portfolio has a higher average monthly
return than the market portfolio over the same
period. In 53% of the cases the random portfolio
has a lower standard deviation, and in 29% of the
cases the random portfolio has both higher aver-
age return and lower standard deviation relative
to the market portfolio.

For each random portfolio we record the differ-
ence between its Sharpe ratio and the Sharpe ratio
of the value-weighted index in the corresponding
period:

�Sharpe ≡ SRrandom − SRmarket.

We have 9,960 observations of the above �Sharpe

values. Figure 1 provides the distributions of these
deltas. �Sharpe is positive in 69% of the cases.
The difference between the Sharpe ratios is sta-
tistically very significant. The average �Sharpe is
0.010 with a standard error of 0.0018 and a t-value
of 5.6.

These results imply that 69% of the completely
random buy-and-hold portfolios beat the market.
This is the central result and main take-away mes-
sage of the paper. It is a result that calls for
a fundamental revision in the way most of us
perceive the optimality of the market portfolio.

Do the random portfolios yield more extreme
Sharpe ratios than the market portfolio? Figure 2
depicts the cumulative distribution of Sharpe
ratios for the random portfolios and for the market
portfolio (for all sub-periods). The figure reveals
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Figure 1 The distribution of �Sharpe.

Figure 2 The cumulative distribution of Sharpe ratios.

that the distribution of Sharpe ratios is not more
extreme for the random portfolios. In fact, there is
almost a First-degree Stochastic Dominance type
of dominance of the random portfolios over the

market: for almost any given value, the probabil-
ity of having a Sharpe ratio higher than this value
is greater for the random portfolios than for the
market portfolio.
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3 Robustness

We examine the robustness of the results to
various alternative specifications: employing a
different performance measure, quarterly instead
of monthly returns, a different number of stocks,
a normal rather than uniform distribution of ran-
dom portfolio weights, and focusing on only the
last two decades. As detailed below, the ran-
dom portfolios beat the market under all of these
specifications in 63–88% of the cases. The dif-
ference is statistically very significant under all
specifications.

3.1 Alternative performance measure

As an alternative to the Sharpe ratio one can look
at the terminal portfolio value. For each random
portfolio we calculate the terminal portfolio value
obtained from a $1 initial investment at the begin-
ning of the sample period, and we compare it
with the terminal value obtained from a $1 initial
investment in the market portfolio over the same
period. The random portfolios yield an average

terminal value of $1.77, with a standard deviation
of $0.66. The market portfolio yields an average
terminal value of $1.69, with the same standard
deviation of $0.60. For each random portfolio we
record the difference between its terminal value
and the terminal value of the market portfolio held
over the same period:

�Ter. Value ≡ Vrandom − Vmarket.

Figure 3 shows the distribution of these differ-
ences in terminal values. We find that �Ter. Value

is positive in 67% of the cases with an average
value of 0.077 and a standard error of 0.017. The
t-value is 4.5.

3.2 Quarterly returns

When we calculate the Sharpe ratio with quarterly
instead of monthly returns we find that �Sharpe

is positive in 63% of the cases, with an average
value of 0.0110, a standard error of 0.0036, and a
t-value of 3.1.

Figure 3 The distribution of �Ter. Value.
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3.3 Number of stocks

When the number of stocks included in the ran-
dom portfolios is 1,000 instead of 500 (the 1,000
stocks with largest market value at the begin-
ning of the sample period), we obtain an average
�Sharpe value of 0.0111, with a standard error
0.0029 of and a t-value of 3.8. �Sharpe is positive
in 63% of the cases.

With 1,000 stocks the average value of �Ter. Value

is 0.1412 with a standard error of 0.0310 and a
t-value of 4.5. �Ter. Value is positive in 64% of the
cases.

3.4 Only the last two decades

In order to examine whether the results reported
above are driven by market conditions in the dis-
tant past, that may no longer be relevant today, we
repeat the analysis where the 5-year sub-periods
are drawn from the January 1, 1995–December
31, 2014 timeframe. We obtain an average �Sharpe

value of 0.0259 with a standard error of 0.0038
and a t-value of 6.8. �Sharpe is positive in 88%
of the cases. The average value of �Ter. Value is
0.0820 with a standard error of 0.0228 and a t-
value of 3.6. �Ter. Value is also positive in 88% of
the cases.

3.5 Normally distributed random weights

We consider the case where the random port-
folio weights are drawn from a normal, rather
than a uniform, distribution. We take a normal

distribution with parameters that are similar to
those of the uniform distribution—a mean of 0.5
and a standard deviation of 0.3 (the correspond-
ing parameters for the uniform distribution on the
segment [0,1] are 0.5 and 0.287, respectively). As
before, the weights are normalized to add up to 1.
The normal weight distribution is similar to the
random additive weight approach employed by
Clare et al. (2013). The main differences are that
the portfolios considered here are bought and held
for the entire period, with no annual “reshuffling”
of the weights, and that the entire 1927–2014
period is employed. We obtain an average �Sharpe

value of 0.0087 with a standard error of 0.0019
and a t-value of 4.6. �Sharpe is positive in 68%
of the cases. The average value of �Ter. Value is
0.0740 with a standard error of 0.0174 and a
t-value of 4.3. �Ter. Value is positive in 66% of
the cases.

The random portfolios do not generate signifi-
cant four-factor alphas. Table 1 provides statistics
on the random portfolios’ exposure to the Fama–
Franch–Carhart four factors. As expected, the
random portfolios on average have positive expo-
sure to the size factor. Value and momentum
exposures are also positive. Consistent with the
findings of Arnott et al. (2013), the alphas are
not statistically different than zero. From this
perspective, the random portfolios do not seem
superior to the market portfolio. However, for
an investor who is concerned with his portfolio’s
Sharpe ratio, or with his terminal wealth, the
random portfolios clearly outperform the market.

Table 1 Exposure to the four factors and alpha.

Market Size Value Momentum Alpha Alpha
exposure exposure exposure exposure (%) (t-value)

Mean 0.98 0.15 0.08 0.01 −0.01 −0.12
25th percentile 0.94 0.01 0.05 −0.02 −0.06 −0.71
Median 0.97 0.12 0.08 0.01 −0.02 −0.19
75th percentile 1.02 0.30 0.12 0.03 0.04 0.45
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4 The reason for the market’s inefficiency

There are two main candidate explanations for the
market’s underperformance. First, it is a portfolio
with a very skewed distribution of weights. The
weight of the largest market capitalization S&P
500 stock (Apple, market cap of $571.5B, as of
July 2014) is more than 100 times larger than the
weight of the smallest cap S&P 500 stock (U.S.
Steel, market cap of $3.9B, as of July 2014). The
10 largest stocks in the S&P 500 index account
for 17.3% of the total S&P 500 market capitaliza-
tion, and the 20 largest stocks account for 27.6%
of the total S&P 500 market capitalization.9 The
largest firm is on average 68.1 times larger than
the median S&P 500 firm. In contrast, in the
random portfolios the largest portfolio weight is
only twice the median portfolio weight. The very
skewed distribution of weights in the market port-
folio makes the diversification in this portfolio
less effective, because most of the portfolio is
concentrated in a very small number of stocks.
One could obtain a higher diversification benefit
with a more evenly weighted portfolio (such as
the random portfolios considered here).

A second possible explanation for the market
portfolio’s inefficiency is that it is tilted toward
large company stocks that tend to be, accord-
ing to some researchers, overvalued. This is the
main argument for fundamental indexing (see,
for example, Arnott et al., 2005; Treynor, 2005).
Indeed, Table 2 reveals that the largest stocks tend
to have lower average returns. The table reports
the average returns and standard deviations of
the 500 largest stocks by size deciles, which
are updated annually. The table shows an almost
monotonic relationship between size, average
return, and volatility: the larger stocks tend to
have both lower average returns and lower stan-
dard deviations.10 The market portfolio is heavily
tilted toward the largest stocks, which induce its
lower average return. However, the largest stocks

Table 2 Return parameters by size decile.

Average
Average monthly
monthly standard

Decile return (%) deviation (%)

(Smallest) 1 1.06 9.95
2 1.07 9.50
3 1.03 9.29
4 1.04 9.09
5 1.06 8.78
6 0.95 8.46
7 0.93 8.27
8 0.91 7.90
9 0.86 7.62
(Largest) 10 0.84 6.89

also have lower volatilities (see Table 2), so it
is not obvious that the large-stock tilt necessarily
hinders performance. Indeed, despite of the fact
that the market portfolio is not very well diversi-
fied, its volatility is not very high, because it is
concentrated in the largest stocks, which tend to
have low standard deviations.

The performance of the market portfolio is
affected by both the skewed weight distribution
and the large-cap tilt. In order to disentangle these
two effects, we analyze two additional portfo-
lios: one without any of these two effects, and
one with only the skewed weight effect. For the
portfolio without any of the effects we take the
equal-weighted portfolio. This portfolio has no
large-cap tilt and no skewness of the weight dis-
tribution. For consistency, we take buy-and-hold
portfolios with initial equal weighting of the 500
largest stocks, and no rebalancing. For portfo-
lios that have the skewed weight effect but no
large-cap tilt, we take a portfolio that has the
exact same distribution of weights as the mar-
ket portfolio in the beginning of the period, but
the weights are randomly permuted among assets.
In other words, we randomly shuffle the initial
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weights across the stocks. Then we just hold
the portfolio passively for the entire sub-period.
We repeat this for 100 different portfolios with
random permutations of the initial weights, and
record the average return parameters of these port-
folios. The permuted portfolios have the same
skewed weight distribution as the market portfo-
lio, but no tilt toward large stocks. A comparison
of the performance of the market portfolio with
the equal-weighted portfolio and the permuted
portfolios is provided in Table 3. All results are
averages of all 5-year periods in the 1927–2014
sample. Acomparison of the equal-weighted port-
folio with the permuted-weight portfolios reveals
the effect of the skewed weights, in isolation of the
large-cap tilt. As expected, these two portfolios
have almost identical expected returns, because
none of these portfolios has a size tilt. The dif-
ference in standard deviations, due to the skewed
weights of the permuted portfolios is not large.
The permuted portfolios have an average monthly
standard deviation of 5.14%, compared with the
average standard deviation of the equal-weighted
portfolio, which is only 5.07%. This increase in
standard deviation is the result of the skewed port-
folio weights. The market portfolio has not only
skewed weights, but it is also systematically tilted
toward the large-cap stocks, which have lower

returns and lower standard deviations. As the
table reveals, the large-cap tilt has two effects:
it reduces both the portfolio mean return and
its standard deviation. Overall, the tilt decreases
the Sharpe ratio relative to the permuted portfo-
lios, because the reduction in expected returns
is more dramatic than the reduction in volatility.
This analysis suggests that the main reason for the
market portfolio’s inefficiency is its large cap tilt.

Portfolios consisting of only 30 randomly
selected stocks also beat the market on average
(seeArnott et al., 2013). After all, these portfolios
are also not “well diversified”. This is consistent
with the above results, as these portfolios have
no size tilt. In addition, while these portfolios
are composed of only 30 stocks, these stocks are
equally weighted. In contrast, in the market port-
folio the weights are very different, even within
the largest stocks: the weight of the largest firm
in the S&P 500 index is typically more than five
times larger than the weight of the 30th largest
firm. Also, the random portfolios in Arnott et al.
are randomly re-drawn every year. This implies
an advantage of a “time diversification” effect
(see, for example, Samuelson, 1989), which is
absent in the market portfolio. It is interesting to
note that if the 30 randomly selected stocks are

Table 3 Decomposing the skewed-weight effect and the large-cap tilt effect.

Average Standard deviation
monthly of monthly

return (%) returns (%) Sharpe ratio

Equal-weighted portfolio (no skewed
weights, no size tilt)

0.98 5.07 0.161

Permuted portfolios (skewed weights,
no size tilt)

0.97 5.14 0.159

Value-weighted portfolio (skewed
weights and large-cap tilt)

0.90 5.01 0.153

Buy-and-Hold, 30 random stocks
(equal weights, no size tilt)

0.98 5.28 0.154
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bought and passively held for the entire 5-year
period (i.e. the time diversification effect is neu-
tralized), the average Sharpe ratio of these random
30-stock portfolios is similar to that of the mar-
ket portfolio, as shown in Table 3. A comparison
of the average standard deviation of the random
30-stock portfolios (5.28%) with the average stan-
dard deviation of the permuted-weight portfolios
(5.14%) suggests that the diversification disad-
vantage implied by the skewed portfolio weights
is less severe than the disadvantage of holding
only 30 equally weighted stocks (note that both
portfolios have no size tilt).

5 Discussion

The evidence presented here suggests that the
value-weighted market index is very far from
being mean–variance optimal. It is easy to beat
even without any sophisticated investment strat-
egy. This is in sharp contrast to the widely
accepted perception of the market being hard to
beat, and thus being the relevant benchmark. The
non-orthodox perspective advocated in this paper
is based on a non-standard methodology: rather
than comparing the market to a single alternative
portfolio, or strategy, a comparison which may
be ex-ante inconclusive due to the large estima-
tion errors involved, here we compare the market
with a large number of buy-and-hold portfolios
with initial weights that are completely random.
While we would expect the market to beat most
of these portfolios (or at least 50% of them) if it is
efficient, even if the estimation errors are large, in
fact, we find that 63–88% of the random portfolios
beat the market.

Our findings suggest that the main reason for the
market portfolio’s inefficiency is the fact that it is
tilted toward large stocks, that tend to have lower
returns.

It is well-documented that most active managers
are unable to beat the market. Indeed, this is

viewed as some of the evidence supporting the
optimality of the market. Our results put this
observation into a different perspective: rather
than indicating the efficiency of the market, they
make active management seem even worse than
previously believed. This is in line with the
literature pointing to the drawbacks of active man-
agement (see, for example, Barber and Odean,
2000, 2001; French, 2008).

Our results have several key implications. First,
one should be very doubtful of investing in the
market index. The evidence suggests that one
could do much better. While we have no pretense
of determining which strategy is best, we show
that even most “dumb” buy-and-hold portfolios
with arbitrary initial weights beat the market.
Thus, it is possible to invest passively and still
considerably outperform the market.

What are the implications for the empirical valid-
ity of the CAPM? The CAPM has two fun-
damental results: (1) that the market portfolio
is the optimal mean–variance equity portfolio,
and (2) the Security Market Line (SML) linear
risk–return relationship. Our findings cast seri-
ous doubt about the empirical validity of (1).
However, this does not necessarily mean that the
SML risk–return relationship does not approx-
imately hold. As Roll and Ross (1994) have
shown, the market portfolio may be very mean–
variance inefficient, while at the same time the
SML approximately holds. Thus, the implications
of the CAPM for the cost of capital and the valu-
ation of risky projects may still be approximately
valid.

Does a mean–variance very inefficient market
portfolio imply that drastic changes in market
values are required in order to make the mar-
ket efficient and restore the CAPM equilibrium?
The answer is no. In fact, it is quite clear that
the optimal mean–variance portfolio cannot have
weights which are very different than the current
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market portfolio weights. After all, the market
portfolio weights, as well as the optimal portfolio
weights, are primarily driven by the fundamental
operations of firms. Apple has a large market cap
primarily because it has annual earnings of bil-
lions of dollars. The distribution of fundamental
firm values, measured by sales, earnings, or book
values, is very skewed—there are a few firms that
make up a sizeable portion of the total firm value
(Axtell, 2001; Gabaix, 2011). This drives the
very unequal weights in the market portfolio. The
weights in the CAPM equilibrium optimal mean–
variance portfolio are also tightly linked with the
firms’ fundamental values, as modeled, for exam-
ple, by Lintner (1965). Thus, the optimal portfolio
weights cannot be too different from the market
weights. However, a relatively small difference
in portfolio weights can have a big difference on
expected returns and on the performance of the
portfolios. For example, suppose that a firm has an
expected end-of-period liquidation value of $100,
and that its CAPM equilibrium value à-la Lintner
(1965) is $90, implying an equilibrium CAPM
expected return of 11.1%. Now, suppose that the
market deviates from the CAPM equilibrium, and
that this firm’s market value is only $80. With this
lower market value, the stock’s expected return is
25%, more than twice the equilibrium expected
return. Thus, small changes in market values can
lead to large changes in expected returns, and
in turn, to large changes in the non-equilibrium
optimal portfolio weights and performance. In
the above out-of-equilibrium example, the mean–
variance optimal portfolio weight in this stock
may be much higher than both its actual mar-
ket weight and its theoretical CAPM equilibrium
weight. The performance of the mean–variance
optimal portfolio may be much better than that
of the market portfolio in this non-equilibrium
setting.

Our results imply that portfolios that are
more evenly weighted than the very skewed

value-weighted portfolio perform much better. A
rather modest increase in the market value of
smaller stocks, and a modest decrease in the mar-
ket value of larger stocks, may suffice to bring
the market to the CAPM equilibrium. These are
exactly the changes in values that will occur
if investors shift their portfolios toward more
equally weighted portfolios. If this happens, the
market will be driven closer to the mean–variance
frontier. Until this happens, though, the market
portfolio will continue to perform poorly, and
investors will have much to gain by deserting
the value-weighted index, and adopting portfolios
which are more evenly balanced across stocks.

Tremendous amounts of wealth are invested in the
market index, a portfolio which is shown here to
be clearly inefficient. The implication is a great
loss of welfare. This loss is partly due to the
wrong belief of many investors and fund man-
agers that it is hard to beat the market. However,
this is not the entire story. Even if a fund manager
thinks that she can beat the market, she knows
that she will be evaluated relative to the market
benchmark. Thus, deviations from the market are
risky from the career perspective of the fund man-
ager (Chevalier and Ellison, 1999). The goal of
this paper is to change this situation, and to chal-
lenge the perception that the market is the relevant
benchmark to beat.

Notes
1 Perhaps the first to express this idea was Francis Galton

(1907), who reported that the average guess of a crowd at
a county fair about the weight of an ox was closer to the
ox’s true weight than the estimates of most crowd mem-
bers, and also closer than any of the separate estimates
made by cattle experts. Surowiecki (2005) provides a
comprehensive review of the idea of the wisdom of
crowds. Levy et al. (2006) make an argument along
these lines for the efficiency of the market portfolio.

2 See, for example, Sharpe (1966, 1992), Jensen (1968),
Samuelson (1989), Gruber (1996), Carhart (1997),
French (2008), and Fama and French (2008). For a
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different view, see, for example, Grinblatt and Titman
(1992).

3 We should note that we are referring to the “market port-
folio” as the value-weighted index of stocks. This is a
limited (but practical) version of the theoretical mar-
ket portfolio which encompasses all assets, including
real-estate, human capital, etc., as pointed out by Roll
(1977). See Markowitz (2005) for a discussion of the
limitations of the CAPM.

4 http:/ /finance.yahoo.com/news/bull-market-passive-in
vesting-120000260.html. Reinganum (2014) suggests
that this trend can be viewed as chasing past perfor-
mance, as launches of new S&P funds tend to follow
years of higher returns on the S&P index.

5 The weights are then normalized by their sum, so that
they add up to 1.

6 Dividends are assumed to be reinvested. If a firm is
delisted during the sample period, the delisting return is
employed.

7 We take the market portfolio as the CRSP value-
weighted portfolio. Similar results are obtained when
instead we take the value-weighted portfolio of only the
500 largest stocks.

8 For a monthly standard deviation of 5%, the random
portfolios yield an average monthly return of 0.98%.
Translating the difference in average monthly returns
to a difference in average annual returns we have:
1.009812 − 1.00912 = 0.011.

9 See, for example, https://www.cboe.com/products/snp
500.aspx.

10 Note that this is not a documentation of the famous
small-firm effect for two reasons: first, we do not docu-
ment excess returns relative to betas, just the average
returns. More importantly, these are the 500 largest
firms, and thus they are all rather large, while the small-
firm effect is typically driven by the smallest firms in
the market.
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