Prof. Lev Muchnik

Prof. Lev Muchnik
Prof.
Lev
Muchnik
David Goldman Chair in Data Entrepreneurship
Head of the doctoral program
Head of Data Science Department
GOLDMAN Center Director

Lev Muchnik is an Associate Professor in the Data Science Department at the Hebrew University Business School.

His expertise lies in the collection and analysis of massive datasets representing large-scale social systems, and their modeling using tools borrowed from social sciences and statistical physics. Muchnik’s recent research has focused on theoretical and empirical problems related to the structure and evolution of social networks, as well as peer effects, the spread of behavioral norms, information diffusion, and other processes specific to networked environments. Jointly with collaborators, Prof. Muchnik developed a seminal method for the identification of peer influence on networks, and conducted large-scale randomized controlled experiments in online communities. His expertise includes the design of scalable microscopic simulations of complex multi-agent systems and time-series analyses, in particular of long-term memory and scaling characteristics of financial data.

His research has been published in Science, Network Science, Scientific ReportsAdvances on Practical Applications of Agents and Multi-Agent SystemsPhysica A: Statistical Mechanics and its ApplicationsBulletin of the American Physical Society, Complexity Hints for Economic PolicyNature Physics, Physical Review E, Practical Fruits of EconophysicsBioinformatics, and Artificial Economics.

Prof. Muchnik earned his Ph.D. in Physics from Bar-Ilan University. He holds a B.A. in Physics from Hebrew University.

In addition to his academic experience, Prof. Muchnik has served as a Visiting Researcher at Microsoft, and a Senior Research Scientist at NYU’s Stern School of Business.

He teaches courses in Data Science, Big Data Analytics, and Information Science.

data-min.jpg

Publications

Muchnik, L., Aral, S., & Taylor, S. J. (2013). Social Influence Bias: A Randomized Experiment. Science341(6146), 647–651. doi:10.1126/science.1240466

Aral, S., Muchnik, L., & Sundararajan, A. (2013). Engineering Social Contagions: Optimal Network Seeding and Incentive Strategies. Network ScienceForthcoming. doi:10.2139/ssrn.1770982

Muchnik, Lev, Pei, S., Parra, L. C., Reis, S. D. S., Andrade, J. S., Havlin, S., Makse, H. A. H. A., et al. (2013). Origins of power-law degree distribution in the heterogeneity of human activity in social networks. Scientific Reports3, 23. Physics and Society; Statistical Mechanics. doi:10.1038/srep01783

Zia, K., Farrahi, K., Sharpanskykh, A., Ferscha, A., & Muchnik, L. (2013). Parallel and Distributed Simulation of Large-Scale Cognitive Agents. In Y. Demazeau et al. (Ed.), Advances on Practical Applications of Agents and Multi-Agent Systems (pp. 324–328). Springer, Heidelberg. Retrieved from https://www.e-proof.sps.co.in/lncs/request.asp?file=bhbgjbbhjdce

Farrahi, K., Zia, K., Sharpanskykh, A., Ferscha, A., & Muchnik, L. (2013). Agent Perception Modeling for Movement in Crowds. PAAMS 2013.

Kämpf, M., Kantelhardt, J. W., & Muchnik, L. (2012). From Time Series to Co-Evolving Functional Networks: Dynamics of the Complex System "Wikipedia”. ECCS 2012. Retrieved from http://85.214.43.8/ECCS2012-paper-v6.pdf

Kämpf, M., Tismer, S., Kantelhardt, J. W., & Muchnik, L. (2012). Fluctuations in Wikipedia access-rate and edit-event data. Physica A: Statistical Mechanics and its Applications391(23), 6101–6111. doi:10.1016/j.physa.2012.07.004

Brot, H., Muchnik, L., Goldenberg, J., & Louzoun, Y. (2012). Feedback between node and network dynamics can produce real world network properties. Physica A: Statistical Mechanics and its Applicationsnull(null). Retrieved from http://dx.doi.org/10.1016/j.physa.2012.07.051

Krawczyk, M. J., Muchnik, L., Mańka-Krasoń, A., & Kułakowski, K. (2011). Line graphs as social networks. Physica A: Statistical Mechanics and its Applications390(13), 2611–2618. doi:10.1016/j.physa.2011.03.009

Gallos, L., Kitsak, M., Havlin, S., & Liljeros, F. (2011). Why hubs may not be the most efficient spreaders. Bulletin of the American Physical Society. Retrieved from http://meeting.aps.org/Meeting/MAR11/Event/144488

Itzhack, R., Muchnik, L., Erez, T., Tsaban, L., Goldenberg, J., Solomon, S., & Louzoun, Y. (2010). Empirical extraction of mechanisms underlying real world network generation. Physica A: Statistical Mechanics and its Applications389(22), 5308–5318. doi:10.1016/j.physa.2010.07.011

Kitsak, M., Gallos, L. K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H. E., & Makse, H. A. (2010). Identification of influential spreaders in complex networks. Nature Physics6(11), 888–893. doi:doi:10.1038/nphys1746

Aral, S., Muchnik, L., & Sundararajan, A. (2009). Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks. PNAS106(51), 21544–21549. doi:10.1073/pnas.0908800106

Muchnik, L, Bunde, A., & Havlin, S. (2009). Long term memory in extreme returns of financial time series. Physica A: Statistical Mechanics and its Applications388(19), Long term memory in extreme returns of financial t. doi:10.1016/j.physa.2009.05.046

Muchnik, Lev, & Sorin Solomon. (2007). Markov Nets and the NetLab Platform: Application to Continuous Double Auction. Complexity Hints for Economic Policy (pp. 157–180). Milano: Springer Milan. doi:10.1007/978-88-470-0534-1

Muchnik, L, Itzhack, R., Solomon, S., & Louzoun, Y. (2007). Self-emergence of knowledge trees: Extraction of the Wikipedia hierarchies. Physical Review E76(1), 016106. Retrieved from http://pre.aps.org/abstract/PRE/v76/i1/e016106

Muchnik, L, Louzoun, Y., & Solomon, S. (2006). Agent Based Simulation Design Principles—Applications to Stock Market. In H. Takayasu (Ed.), Practical Fruits of Econophysics (pp. 183–188). Tokyo: Springer Tokyo. doi:10.1007/4-431-28915-1_33

Louzoun, Y., Muchnik, L., & Solomon, S. (2006). Copying nodes versus editing links: the source of the difference between genetic regulatory networks and the WWW. Bioinformatics22(5), 581–588. doi:btk030 [pii] 10.1093/bioinformatics/btk030

Yamasaki, K., Muchnik, L., Havlin, S., Bunde, A., & Stanley, H. E. (2006). Scaling and memory in return loss intervals: Application to risk estimation. In H. Takayasu (Ed.), Practical Fruits of Econophysics (pp. 43–51). Tokyo: Springer. doi:10.1007/4-431-28915-1_7

Daniel, G., Muchnik, L., & Solomon, S. (2006). Traders Imprint Themselves by Adaptively Updating their Own Avatar. In M. Beckmann, H. P. Künzi, G. Fandel, W. Trockel, A. Basile, A. Drexl, H. Dawid, et al. (Eds.), Artificial Economics (Vol. 564, pp. 27–38). Berlin/Heidelberg: Springer-Verlag. doi:10.1007/3-540-28547-4

Blank, A., Alexandrowicz, G., Muchnik, L., Tidhar, G., Schneiderman, J., Virmani, R., & Golan, E. (2005). Miniature self-contained intravascular magnetic resonance (IVMI) probe for clinical applications. Magn Reson Med54(1), 105–112. doi:10.1002/mrm.20537

Yamasaki, K., Muchnik, L., Havlin, S., Bunde, A., & Stanley, H. E. (2005). Scaling and memory in volatility return intervals in financial markets. Proc Natl Acad Sci U S A102(26), 9424–9428. doi:0502613102 [pii] 10.1073/pnas.0502613102

Schneiderman, J., Wilensky, R. L., Weiss, A., Samouha, E., Muchnik, L., Chen-Zion, M., Ilovitch, M., et al. (2005). Diagnosis of thin-cap fibroatheromas by a self-contained intravascular magnetic resonance imaging probe in ex vivo human aortas and in situ coronary arteries. J Am Coll Cardiol45(12), 1961–1969. doi:S0735-1097(05)00744-8 [pii] 10.1016/j.jacc.2004.09.080

Muchnik, L, Slanina, F., & Solomon, S. (2003). The interacting gaps model: reconciling theoretical and numerical approaches to limit-order models. Physica A: Statistical Mechanics and its …330, 232–239. Retrieved from http://www.sciencedirect.com/science/article/pii/S0378437103007039

Muchnik, L, & Solomon, S. (2003). Statistical mechanics of conventional traders may lead to non-conventional market behavior. Physica Scripta41(T106). Retrieved from http://iopscience.iop.org/1402-4896/2003/T106/010

Shatner, M., Muchnik, L., Leshno, M., & Solomon, S. (2000). A continuous time asynchronous model of the stock market; beyond the LLS. Economic Dynamics from the Physics Point of View. Bad Honnef, Germany: Physikzentrum. Retrieved from http://arxiv.org/abs/cond-mat/0005430